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Abstract 

The Riemannian Bures metric on the space of (normalized) complex positive matrices is used 
for parameter estimation of mixed quantum states based on repeated measurements just as the 
Fisher information in classical statistics. It appears also in the concept of purifications of mixed 
states in quantum physics. Therefore, and also for mathematical reasons, it is natural to ask for 
curvature properties of this Riemannian metric. Here we determine its scalar curvature and Ricci 
tensor and prove a lower bound for the curvature on the submanifold of trace- l matrices. This bound 
is achieved for the maximally mixed state, a further hint for the statistical meaning of the scalar 
curvature. © 1999 Elsevier Science B.V. All rights reserved. 
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1. Introduction 

Let 79 denote the space of complex positive n xn-matrices for a fixed n and 791 the sub- 

manifold of trace- I matrices representing nondegenerate mixed states of an n-dimensional 

quantum system. The tangent space at Q ~ 79 (resp. 791) consists of all Hermitian (trace- 

less) matrices. These manifolds carry the so-called Riemannian Bures metric g defined 

by 

go(X, Y) = ½Tr XG, X, Y ~ To7), 
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where G is the (unique, by the Sylvester-Rosenblum theorem, see [2]) solution of oG + 

GO = Y. It should be mentioned that g is also well defined on manifolds of all O > 0 

of fixed rank, but we will deal only with the maximal rank. This Riemannian metric was 

introduced by Uhlmann [17-19] in generalizing the Berry phase to mixed states. He was 
led to this metric by asking for curves on minimal length purifying a given path of densities. 

Later on this metric appeared also in other contexts, see e.g. [3,14]. 
The restriction of g to the manifold of trace-1 diagonal matrices, i.e. to the manifold of 

all probability distributions on an n-point set, is (up to the factor 1/4)just the Fisher metric 

known from classical statistics, see e.g. [1,10]. Similarly to this case, the Bures metric is 

related to the statistical distance of quantum states, see [3,4]. Roughly speaking, both met- 
rics give a lower bound for the variance of an optimal parameter estimator. Thus, the Bures 

metric generalizes the classical Fisher information to the quantum case. Among other gener- 

alization, namely the so-called monotone metrics (i.e. metrics decreasing under stochastic 

mappings) [14], the Bures metric is minimal, and it seems to play a distinguished role 

also for other reasons, see [7,9]. Partial results concerning the curvature of the Bogoliubov 
metric, another monotone metric, were obtained in ] 11 ]. 

Several authors, e.g. [ 13,16], suggested that the scalar curvature has a quantum statistical 

meaning as a measure of local distinguishability of states in the sense that regions of small 
curvature require many measurements for distinguishing between neighboring states. But 

this is still in progress, and up to now, no statistical equation or estimation involving the 
scalar curvature seems to be available. However, we show that the scalar curvature is minimal 

for the maximally mixed state ( l / n ) l  and that it diverges nearby pure states, further hints 

for the suggested statistical meaning. 
We determine here the Ricci tensor and the scalar curvature (Propositions 2 and 3) 

completing the list of basic local curvature quantities of the Bures metric. 

Notation. The eigenvalues of a positive matrix 0 are denoted by )~i- Thus, if we assume 

0 to be diagonal, then 0 = diagO, l . . . . .  ~-n). Bold letters are used for operators acting on 
matrices. They will depend on 0, so that they actually represent fields of operators called 
by several authors as superoperators. However, we frequently suppress this dependence 

for brevity of notation similarly to vector field and other quantities. In particular, L o and 

R 0 denote the operators of left and right multiplication by 0 and 1/(L + R) is the inverse 
operator of L + R (denoted by ~ - l  in [3]). This operator appears in many of the following 
formulae and is a serious obstruction for using coordinates in handling the Bures metric 

which now reads 

1 1 
g = ~ Tr do---7--~ (do). (l) l ~ t K  

However, from the theory of matrix equations [2,15], some explicit formulae for this op- 
erator and the metric can be derived [8]. Vector fields X, Y . . . . .  on 79 resp. 791 we regard 
as functions O ~ Xo with Hermitian (traceless for 791) matrix values. Quantities with 
superscript 1 will always refer to 791. 
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2. Ricc i  t ensor  a n d  sca lar  c u r v a t u r e  

The following calculations are based on results which appeared as a brief communication 
in [6]. Proofs and more details can be found in [5]. In particular, we obtained the following 
proposition. 

Propos i t i on  1. The Riemannian curvature tensor fieM of  the Bures metric on 79 resp. 791 

is given by 

1 X 1 1 1 Z 

1 X 
+ g ( i L R F  1 Z , L L +  R ~ 1  y ] , i [ L _ ~ R W ,  L + R  ] )  

1 1 1 Y , 
- g  ( i L R  L L + R  , 

T~ 1 (W, Z, X, Y) = ~ ( W ,  Z, X, Y) -4- g(Y, Z) g(X, W) - g(X, Z) g(Y, W), 

where the commutator is pointwise the usual matrix commutator, [X, Y]Q := XQY o - 

foxy. 

We mention that for n = 2 the Riemannian manifold (D l , g) is isometric to an open half 
3-sphere of radius 1/2 [19]. The geometry for n > 2 is much more complicated, e.g. 791 is 
not locally symmetric [5]. 

Now we first determine the curvature mapping, which we denote in accordance with [12] 
also by R .  It is given by g(T~(X, Y)Z,  W) = R ( W ,  Z, X, Y) and we have to separate W in 
the above equations as a single argument of g. We will treat simultaneously the normalized 
and the unnormalized case including in brackets additional terms corresponding to the 
normalized case. Using the definition of g and the self-adjointness of L and R w.r.t, the 
Hilbert-Schmidt product, we find after a straightforward calculation: 

,.El 1]] R~I)(X, Y ) Z = 2 L - - ~  Z, ~-~--~ ~ - - ~  V, ~ - R  X 

+ t . L + S  ' L - - T - / z  

+ r ' LR 1 1 

+ (g(Y, Z ) X  - g(X, Z)Y). 

In order to find the Ricci tensor: 

Ricci(Y, Z) := Tr { X ~ ~ ( X ,  Y )Z  }, 
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we eliminate the argument X in 7~l)(X, Y)Z, 

1 1 L R  1 Y o - -  
Ricci(l)(Y' Z) = Tr  2 a d ~  Z ° L +----R ° ad L + - - - ~  L + R  

L . [ ,  , y] l 
+ adL-- ~ Z, o 

L + R  L + R  

1 L R  1 1 / 
+ a d  L + R Y o L +----R o a d L - - ~ Z  o L +----R J 
+ ((n 2 - 2)g(Y, Z)). (2) 

This equation requires some comments, adV denotes the usual commutation operator, 

adV(W)  :=  [V, W], and we have to do with compositions of  operators. The trace should be 

regarded, originally, as the trace of  operators acting on the real tangent spaces, that means 

on the space of  Hermitian matrices, traceless for Ricci I. Clearly, the additional term in the 

normalized case is the trace of  X ~ g(Y, Z)X - g(X, Z)Y  on the (n2-1)-dimensional  

tangent space. For the common term there is no need for distinguishing between the spaces, 

since the normal direction generated by 0 does not give any contribution to the trace of 

X w-~ ~ ( X ,  Y)Z. Indeed, ~ ( X ,  Y)Z vanishes for X o :=  Q, because (L + R) -1 (Q) = ½1. 

Finally, complexification does not change the trace. Therefore, we can regard (2) as the 

trace of  a complex operator acting on all complex n ×n-matrices. 

To continue the determination of the Ricci tensor we notice that the second term in (2) 

vanishes, because T r a d V o ( L  + R) -1 = 0 for all V. Indeed, we can suppose that • is 

diagonal. Then the standard matrices are eigenvectors of  L and R, 

f (L, R)(Eij) = f (,ki, £j) Eij 

for any function f ,  and we get 

T r a d V  o - -  
L + R  

( [ , ] )  1 
- - Z  Eij, V , L - - - ~ E i  j = Z  £ i + X  j 

i,j i,j 
- - ( E i i  - Eij ,  V) = O. 

What remains in (2) has the shape of  2 (Z, Y) + (Y, Z) + ((n 2 - 2)g(Y, Z)) and the 

symmetry of the Ricci tensor implies the symmetry of  the bilinear form ( , ). Hence (2) 

reduces to 

1 L R  1 1 
Ricci~l)(Y, Z) = 3 T r a d ~ Y  o L + R  ° a d L - - - ~ Z  ° L + R  

+ ((n 2 - 2)g(Y, Z)). (3) 

The Ricci tensor can be represented as Ricci(Y, Z) = g (Y, FRicci(Z)), where the Ricci 

mapping FRicc i is a field of  operators self-adjoint w.r.t, the Bures metric and whose trace is 
the scalar curvature. We cannot expect that Ricci is a simple quadratic form like the Killing 

form or that FRicci is a simple expression in terms of  L and R, e.g. like L R ( L  + R ) - I .  
Indeed, for diagonal 0, Eq. (3) yields using the standard basis: 
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YJi~'kZij _ _ V" Ricci(Y, Z) 3 
()~i "+ ~.j)()~i "+ ~,k)(~.k + )~j) i,j,k 

3 ~izjj  
2 E. .  ()~i + ~,j)2 

t,j 

-6/~V~ (~.i + ~.j)2 FRicci(Z) = 6 Z ()~i + ~.k)()~k + )~j) Z i jE i j  )~i Zj jEi i"  (4) 
i,j,k i.j 

To express the Ricci mapping for a general 0 we need the following natural mappings: 

m, mo : A ® A  ) A, A : A  >.At@A, A:=Mnxn(C), 

where m is the usual multiplication, mo the opposite multiplication, mo(X ® Y) = YX, 
and A is the dual of  m if we identify .4 and .At* via A ~ (A, • ). Explicitly, 

A(Ei j )  = Z Eik ® Ekj. 
k 

It is obvious that m, mo and A are invariant under the adjoint action of the unitary group, 
e.g. A = (Aflu ® Adu) o ,4 o Adu*. Our first result is the following proposition. 

Proposition 2. 

(1) Z Ricci(l)(Y, Z) = g(Y, FRicc i ( ) ) ,  

where 

1 , , 
F (1) = 6 ( m - m o )  o ~ - - ~ ® ~ + L - - ~ ®  o , 4 o - -  Ricci L + R 

+( (n  2 - 2) ld).  (5) 

Proof.  If  0 is diagonal the last equation follows by comparing it with (4). For general O it 

is sufficient to show that F given by the fight-hand side of (5) is U(n)-invariant, i.e. 

Fuo,* = Adu o F o o Adu*. 

But this follows from the invariance of the operators involved in (5). [] 

Now we proceed with the scalar curvature S = Tr  FRicci. Again, the normal direction 
does not contribute to the trace and we can take it on all complex matrices. Using some 
obvious algebraic relations between the multiplication operators, e.g. 

m o (L ® Id)  = L o m o (Id ® Id),  m o (R ® Id)  = m o (Id ® L), 

m o o ( R ® I d ) = R o m o o ( I d ® I d ) ,  m o o ( L ® I d ) = m o o ( I d ® R ) ,  

Eq. (5) yields 

= Tr  eRicci 

= 6 T r ( L  + R) o {mo ( R ® I d ) - m o  o ( Id®R)}o ® 0,40 
\ L + R  L + R ) '  L + R  
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= 6 Tr{m o (R®Id)  - m o  o (Id®R)} o ~ - - - ~ ®  0,4 .  

The evaluation of  this trace yields our second result as follows. 

21 

(6) 

Proposi t ion 3. The scalar curvature on 79 resp. 791 equals 

X o ( - 0 )  2 3 Tr 4 -1 + ((n2 1)(n 2 - 2)), (7a) 
So (1) = 6 T r 0  Xo(_O) ~ 2 

= Trho(o) + ((n 2 - 1)(n ~ - 2)), (7b) 

where Xo is the characteristic polynomial of o, X o its derivative and h o the function given 

Y 

h o ( t ) : = 6 t  Tr 2t" 

Remark .  Xo(-O) is, in fact, invertible since Xo( - t )  = l-[O~i + t) implies Xo(-Xi)  > 0 
for all eigenvalues. 

Proof. It is sufficient to prove the assertion for diagonal 4. For such 0 it is easy to calculate 

the trace in (6), 

)~k 3 X'-" 1 
So 6 /--" + Xk) Zk + Xj) /--" 

i,.j,k i )2 
1 3 0_1. 

= 6 Xk Xi + Lk -- ~ Tr (8) 

This is in accordance with formulae (7a) and 7(b). The additional term in the normalized 

case is obvious by (5). [] 

The scalar curvature depends only on the invariants of  Q. In order to express it in terms 

of invariants, we introduce the following matrix depending on Q: 

g := [&j]," j=l, 
Eij :=  1 for i  + 1 = j ,  

Sij : =  ( - - 1 ) n - J e n + l - j  for i = n, 

Cii :=  0 otherwise, 

where ei is the elementary invariant of  degree i of 4, i.e. X(t) = Y~.7=0 en - i ( - t ) ' .  Since 
£0 has the same characteristic polynomial as 0 both matrices are conjugate provided the 

eigenvalues of  0 are different. Thus, at least for such points, we get from Proposition 3 the 

following corollary. 
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Corollary 4. 

S (1) = 6Tr£  X'(-£)-----~2 3 Tr £-1 d- ((n 2 -- 1)(n 2 -- 2)), 
X ( - - £ )  2 2 

= TrhE(£) + ((n 2 - 1)(n 2 - 2)), 

where 

( 1 )  2 3 ~ + t l  2t" he ( t )  : = 6 t  Tr ~ .----:--~ 

(9a) 

(9b) 

Since the set of ~ with different eigenvalues is dense, the corollary is true for all points by 
continuity of the curvature. 

A further consequence of Proposition 3 is the following lower bound for the scalar 
curvature in the normalized case. 

Corollary 5. 

(5n 2 - 4)(n 2 - 1) 
Sol > (10) - 2 

For n > 2 equality h o l d s / f r o  = (1/n)l.  For n = 2 the scalar curvature equals 2 4 f o r  

all 4. 

Proof. The eigenvalues of Q ~ ~)1 satisfy ~ Xi = 1 and we have 

9 
(t~]. 1 ) 2 k~] ( ~ ) "  Z X k  1 1 1 

k i;k 

hk 1 

- -  h i + h k  . h i + h k  - -  4 2 

+ 

n2(n - 1) 2 n2(n - 1) 
+ 

n2(n 2 -- 1) 

4 

Here we used the Schwartz inequality, the relation 

1 
/ ~  )~i + hk 

)~k _ ~ Xk n _ n 2 n n(n -- 1) 

• Xi+-hk ~ .  XiT~.k 2 2 2 - -  2 

and the fact that the arithmetic mean of all 1~(hi q- )~k), i =fi k, is greater than or equal to 
the harmonic mean which equals n /2 .  Hence, Eqs. (7a), (7b) and (8) imply 

3 (5n 2 - 4)(n 2 - 1) 
So l > ~n2(n 2 -  1 ) + ( n  2 -  1)(n 2 - 2 ) =  2 

Moreover, the bound is achieved for p = (1/n)l .  Finally, we note that for n = 2 the above 
estimations are, in fact, equations (S 1 = 24). For higher n this can hold only iff all ~-i q- ~.k, 
i 5~ k, are equal, i.e. iff )~i = 1/n. Hence, Q = ( l /n)1 is the only minimal point. O 
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There  is no upper  bound  for n > 2. Indeed,  by (8) the scalar curvature equals  up to a 

constant  the sum of  all 6~.k / (O~i + )~k ) ()~k + )~j ) ), where  not  all indices are equal.  Therefore ,  

S I tends to infinity iff  at least  two e igenvalues  b e c o m e  small,  or, equivalently,  i f f  e,,_ I tends 

to zero, because  e n -  1 is the sum of  all products  )~i~ " • • ~-i,,_ ~, i I < i2 < • • - < i n -  I. Roughly  

speaking S1 diverges i f  we  get c lose to densi ty  matr ices  o f  rank k < n - 1, in particular, if  

we get c lose to a pure state. 

E x a m p l e .  We consider  the scalar curvature on ~)1 for n ---- 3 using Corol lary  2: we have to 

set el --  1. Then 

X (t)  = - t  3 + t 2 - e2t -k- e3, 

e3 0 

Z ( - £ ) = 2  e3 e 3 - e 2  

e3 e3 - e 2  

--e2 - 2  

X ' ( - £ ) =  - 3 e 3  2e2 

- 5 e 3  5 e 2 - 3 e 3  

and we  obtain 

0 

8 =  0 

e3 1) 
1 , 

1 + e3  - e2 

- - 5  , 

2e2 -- 5 

3 
S 1 = 6 T r £  X ' ( - ~ ) 2 X ( - ~ )  -2 - Yr ~-1  q.. 56 = 2 

Similar ly  for n = 4: 

S J = 6  
6 3 e 4 + 3 5 e ~ - - 4 3 e 2 e 3  - - 7 e 3 - - 3 e ~  

e4-k-e~ -- e2e3 

,o) 
0 1 , 

- e 2  1 

28 e3 - 49 ee - 9 

e3 -- e2 
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